วันจันทร์ที่ 24 สิงหาคม พ.ศ. 2552

ความต้านทานไฟฟ้า ตัวนำไฟฟ้า และฉนวนไฟฟ้า

ความต้านทานไฟฟ้า ตัวนำไฟฟ้า และฉนวนไฟฟ้า
2.1 ความต้านทานไฟฟ้า (Resistance)
ความต้านทานไฟฟ้า คือคุณสมบัติของวัตถุ ที่ต้านทานการไหลของกระแสไฟฟ้า วัตถุทุกชนิดจะต้านทานการไหลของกระแสไฟฟ้า วัตถุบางชนิดต้านได้มาก บางชนิดต้านได้น้อย ดังนั้น คุณสมบัติความต้านทานไฟฟ้า คือทำให้กระแสไฟฟ้าเปลี่ยนแปลง ถ้าในวงจรไฟฟ้า ค่าความต้านทานมีมากกระแสไฟฟ้าไหลได้น้อย แต่ถ้าในวงจรไฟฟ้า ค่าความต้านทานน้อย กระแสไฟฟ้าไหลได้มาก
ตัวต้านทานไฟฟ้า เป็นสิ่งที่นักวิทยาศาสตร์ประดิษฐ์ขึ้นมา เพื่อใช้ต่อร่วมกับวงจรไฟฟ้า เพื่อบังคับให้กระแสไฟฟ้าในวงจรเปลี่ยนแปลงไปตามต้องการ ทำจากวัตถุที่ปล่อยอิเล็กตรอนหลุดออกจากวงโคจรได้น้อย
ตัวต้านทานไฟฟ้า บางชนิดทำจากอโลหะ เช่น ตัวต้านทานไฟฟ้าที่ชื่อว่า คาร์บอนรีซีสเตอร์ (Carbon Resistor) ที่ใช้ประกอบในวงจรอิเล็กทรอนิกส์ต่างๆ โดยมีลักษณะทรงกระบอกตัน มีหางทั้งสองข้าง ค่าความต้านทานมีแถบสีแสดง
ตัวต้านทานไฟฟ้าอีกชนิดหนึ่งทำจากโลหะ เช่น ตัวต้านทานที่เรียกว่า ไวร์วาล์วรีซีสเตอร์ มีลักษณะเป็นเส้นลวด ( ลวดนิโครม หรือ ลวดแมงกานีส ) พันรอบแท่งกระเบื่องหรือพอซเลน และมีขั้วสำหรับต่อสายไฟ ตัวต้านทานชนิดนี้โตกว่าชนิดคาร์บอน
2.2 ตัวนำไฟฟ้า (Conductor)
ตัวนำไฟฟ้า คือวัตถุที่มีความต้านทานการไหลของกระแสไฟฟ้าน้อยมาก คุณสมบัติของวัตถุชนิดนี้จะนำกระแสไฟฟ้าได้ดี สารที่เป็นโลหะจะนำไฟฟ้าได้ดี เช่น เงิน ทองแดง อะลูมิเนียม ฯลฯ
2.3 ฉนวนไฟฟ้า (Insulator)
ฉนวนไฟฟ้า คือวัตถุที่มีความต้านทานต่อการไหลของกระแสไฟฟ้าสูงมากหลายเมก-โอห์ม กันไม่ให้กระแสไฟฟ้าไหลผ่านตัวนำได้ วัตถุชนิดที่จะเป็นฉนวนไฟฟ้าได้ดี เช่น แก้ว ไม้ กระดาษ พลาสติก ฯลฯ
2.4 หน่วยของความต้านทาน
ความต้านทานมีหน่วยเป็นโอห์ม (Ohm) ใช้สัญลักษณ์ของหน่วย โอห์ม เขียนเป็น
1 กิโล-โอห์ม (kilo-ohm), k = 1,000 โอห์ม ( )
1 เมกะ-โอห์ม (Mega-ohm), M = 1,000 กิโล-โอห์ม (k )
= 1,000,000 โอห์ม( )



สัญลักษณ์ของความต้านทาน
2.5 ความต้านทานของสารตัวนำ
ขนาดและชนิดของสสารที่นำมาใช้ทำเป็นสายไฟในวงจรนั้น จะต้องทำให้มีความต้านทานต่อกระแสไฟฟ้าต่ำที่สุดเท่าที่จะทำได้เพื่อต้องการให้กระแสไฟฟ้าไหลผ่านได้ง่ายๆ ในวงจรไฟฟ้านั้นความต้านทานของสายไฟฟ้าที่ใช้เป็นตัวนำนั้น จะมีค่าเปลี่ยนแปลงไปตามกฎของความต้านทาน (Law of Resistance) ซึ่งกล่าวไว้ดังนี้
1) ความต้านทานของตัวนำจะเปลี่ยนแปลงไปตามความยาวของตัวนำโดยตรง เช่น ถ้าสายตัวนำทองแดงยาว 1 เมตร มีความต้านทาน 0.004 โอห์ม ถ้าสายยาวเพิ่มขึ้น 2 เมตร ความต้านทานก็จะเพิ่มขึ้นอีกเป็น 0.08 โอห์ม
2) ค่าความต้านทานจะเปลี่ยนค่าเป็นสัดส่วนกับพื้นที่หน้าตัดของตัวนำ หมายความว่า ถ้าพื้นที่หน้าตัดมีมากขึ้น ความต้านทานก็จะมีค่าลดลง และถ้าพื้นที่หน้าตัดมีน้อยลง ความต้านทานก็จะมีมากขึ้น
3) ความต้านทานของตัวนำต่างๆ จะขึ้นอยู่กับคุณสมบัติเฉพาะตัวของมันตามธรรมชาติ
4) อุณหภูมิทำให้ความต้านทานเปลี่ยนแปลงตามความสัมพันธ์

= ความต้านทานเมื่ออุณหภูมิเป็น t องศา
= ความต้านทานของตัวนำเมื่ออุณหภูมิเป็น 0 C
t = อุณหภูมิที่เปลี่ยนแปลงไปจากเดิม
= (Alpha) สัมประสิทธิ์ – ความต้านทาน
โลหะ อุณหภูมิสูง จะมีความต้านทานเพิ่มขึ้น
อโลหะ อุณหภูมิสูง จะมีความต้านทานลดลง
2.6 ความต้านทานจำเพราะ (Specific Resistance or Resistivity)
ความต้านทานจำเพาะของลวดตัวนำใดๆ หมายถึง ความต้านทานจำเพาะของวัสดุตัวนำและลวดตัวนำชนิดนั้นที่จะบอกความต้านทานของสายที่มีขนาดตามกำหนด
ในระบบอังกฤษ วัดเส้นผ่าศูนย์กลางของสาย โตเป็นมิล(1มิล=1/1,000นิ้ว) และวัดพื้นที่หน้าตัดเป็นเซอร์คูลาร์มิล และยาว 1 ฟุต ณ อุณหภูมิที่กำหนด จะมีความต้านทานจำเพาะจำนวนหนึ่ง เช่น สายทองแดงขนาด 1 เซอร์คูลาร์มิล – ฟุต ที่อุณหภูมิ 20 C จะมีความต้านทาน 10.4 โอห์ม
ในระบบเมตริก วัดเส้นผ่าศูนย์กลางหน่วยเป็น เซนติเมตร และวัดพื้นที่หน้าตัดเป็นตารางเซนติเมตร และยาว 1 เซนติเมตร ณ อุณหภูมิที่กำหนดจะมีความต้านทานจำนวนหนึ่ง เช่น สายทองแดงขนาน 1 ตร.ซม. จะยาว 1 เมตร ที่อุณหภูมิ 20 C จะมีความต้านทาน 1.72 10 โอห์ม
หรือความต้านทานจำเพาะของตัวนำใดๆ หมายถึง ความต้านทานของวัตถุชนิดนั้นมีความยาว 1 เมตร พื้นที่หน้าตัด 1 มม. ที่อุณหภูมิ 20 C






ตารางที่ 2.1 แสดงความต้านทานจำเพาะที่อุณหภูมิ 20 C และสัมประสิทธิ์อุณหภูมิ
ชนิดของวัตถุ
โอห์ม – ฟุต หรือ
เซอร์คูลาร์มิล – ฟุต
โอห์ม – ซม. หรือ
โอห์ม/ลูกบาศก์เมตร
โอห์ม – เมตร หรือ
โอห์ม/ลูกบาศก์เมตร
ค่าสัมประสิทธิ์อุณหภูมิ
ทองแดง
เงิน
อะลูมิเนียม
เหล็ก
ทองเหลือง
ทังสเตน
แพลทินัม
นิโครม
10.4
8.85
16.9
60 – 84
42
33
66.2
600
1.72
1.47
2.63
10 – 14
6 – 8
5.5
11
100
1.72
1.47
2.63
10 – 14
6 – 8
5.5
11
100
0.00393
0.0038
0.0039
0.0055
-
0.0045
-
-
สูตรหา ความต้านทานของสาย
R =
เมื่อ R = ค่าความต้านทานหน่วยเป็นโอห์ม
= ค่าความต้านทานจำเพาะ
หน่วย - โอห์มต่อเซอร์คูลาร์มิล – ฟุต
- โอห์มต่อลูกบาศก์เซนติเมตร
- โอห์มต่อลูกบาศก์เมตร
= ความยาวหน่วยเป็น ฟุต เชนติเมตร หรือ เมตร
A = พื้นที่หน้าตัดของลวดตัวนำ หน่วยเป็น เซอร์คูลาร์มิล, ตารางมิลลิเมตร หรือ ตารางเซนติเมตร
ตัวอย่างที่ 2.1
จงหาความต้านทานของสายทองแดงที่มีพื้นที่หน้าตัด 750,000 เซอร์คูลาร์มิล ยาว 2,500 ฟุต
วิธีทำ จากสูตร R =
ความต้านทานจำเพาะของลวดทองแดง = 10.4 เซอร์คูลาร์มิล – ฟุต
= 2,500 ฟุต
A = 750,000 เซอร์คูลาร์มิล
แทน R = 10.4 ( 2,500/750,000)
= 0.035 โอห์ม
ความต้านทานทองแดง = 0.035 โอห์ม
2.7 ผลของอุณหภูมิต่อค่าความต้านทาน
สารตัวนำส่วนใหญ่ ค่าความต้านทานจะเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้น และถ้าอุณหภูมิต่ำลง ค่าความต้านทานของสารจะลดต่ำลงด้วย เพราะเมื่ออุณหภูมิเปลี่ยน การปล่อยอิเล็กตรอนจากปรมาณูของสารก็เปลี่ยนตามไปด้วย
สารหนึ่งๆ จะเปลี่ยนแปลงความต้านทานไปเป็นกี่เท่าของความต้านทานเดิมเมื่ออุณหภูมิสูงขึ้น 1 C เรียกว่า สัมประสิทธิ์อุณหภูมิของความต้านทาน (Temperature Coefficient of Resistance)
2.8 ค่าอุณหภูมิสมบูรณ์ (Absolute Temperature)
คือค่าของอุณหภูมิที่ทำให้วัสดุตัวนำนั้นๆ มีค่าความต้านทานเท่ากับ ศูนย์
ตารางที่2.2 ค่าอุณหภูมิสมบูรณ์ของวัสดุบางชนิด

ชนิดของวัสดุ
ค่าอุณหภูมิสมบูรณ์
นิกเกิล
เหล็ก
ทังสเตน
ทองแดง
อะลูมิเนียม
เงิน
ทอง
-147
-180
-202
-235
-236
-243
-274
2.9 ค่าสัมประสิทธิ์อุณหภูมิ
คือ ค่าความต้านทานที่เพิ่มขึ้น เมื่อความต้านทานท1 โอห์ม ร้อนขึ้น 1 C
ตาราง 2.3 ตารางค่าสัมประสิทธิ์อุณหภูมิของความต้านทานของวัสดุตัวนำบางชนิด เมื่ออุณหภูมิ 20 C
ชนิดของวัสดุ
ค่าสัมประสิทธิ์อุณหภูมิ
นิกเกิล
เหล็ก
ทังสเตน
ทองแดง
อะลูมิเนียม
เงิน
ทอง
0.006
0.0055
0.0045
0.00393
0.0039
0.0038
0.0034
ความต้านทานจะเปลี่ยนไปตามอุณหภูมิที่เปลี่ยนแปลงตามความสัมพันธ์ ดังนี้
จากสูตร R = R (1+a (t - t ) )
เมื่อ R = ความต้านทานเมื่ออุณหภูมิครั้งแรก
R = ความต้านทานเมื่ออุณหภูมิเปลี่ยนไป
t = อุณหภูมิครั้งแรก
t = อุณหภูมิเปลี่ยนไป
a = ค่าสัมประสิทธิ์อุณหภูมิของความต้านทาน
2.10 ความนำ (Conductance)
ความนำเป็นส่วนกลับของความต้านทาน ซึ่งหมายถึง คุณสมบัติของสารที่ยอมให้กระแสไฟฟ้าไหลผ่านง่ายๆ นั้นคือความสามารถในการนำไฟฟ้าของตัวนำ ใช้สัญลักษณ์คือ G มีหน่วยเป็นซีเมนส์ (Siemens) ใช้ตัวย่อ S
G = 1/R ซีเมนส์
R = 1/G โอห์ม (ohm)

geovisit();

ไม่มีความคิดเห็น:

แสดงความคิดเห็น